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ABSTRACT The implementation of routine whole-genome sequencing (WGS) promises to transform our ability to monitor the
emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates
corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the
data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http://
www.microreact.org/project/EkUvg9uY?tt�rc). Our analysis demonstrates that high-risk clones can be identified on the basis of
population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resis-
tance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least
as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital compo-
nents for future molecular epidemiological surveillance: (i) large-scale structured surveys, (ii) WGS, and (iii) community-
oriented database infrastructure and analysis tools.

IMPORTANCE The spread of antibiotic-resistant bacteria is a public health emergency of global concern, threatening medical
intervention at every level of health care delivery. Several recent studies have demonstrated the promise of routine whole-
genome sequencing (WGS) of bacterial pathogens for epidemiological surveillance, outbreak detection, and infection control.
However, as this technology becomes more widely adopted, the key challenges of generating representative national and interna-
tional data sets and the development of bioinformatic tools to manage and interpret the data become increasingly pertinent. This
study provides a road map for the integration of WGS data into routine pathogen surveillance. We emphasize the importance of
large-scale routine surveys to provide the population context for more targeted or localized investigation and the development
of open-access bioinformatic tools to provide the means to combine and compare independently generated data with publicly
available data sets.
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Most bacterial infections of humans are caused by organisms
that have a large population size and short generation times,

and lineages with novel properties emerge and expand within ob-
servable time scales (1). Lineages that present a serious threat to
public health are designated high-risk clones (HRCs) (2); these
often combine enhanced virulence or transmission potential with
multiple-antibiotic resistance. As HRCs are often difficult to treat
and are associated with significant morbidity, mortality, and eco-
nomic cost, they require targeted surveillance and containment at
the population level. The considerable management challenge for
public health microbiologists in tackling HRCs can be broken
down into three tasks: (i) identification of public health risks
posed by emerging and/or expanding HRCs, (ii) assessment of
this risks by predicting important clinical and epidemiological
consequences, and (iii) risk management through the implemen-
tation of prevention and control strategies. With the cost of
sequencing entire bacterial genomes in steady decline and the de-
velopment of powerful bioinformatic tools gathering pace, whole-
genome sequencing (WGS) will inevitably be widely implemented
for routine epidemiological surveillance. The dissemination of
genomic data through established national and international net-
works of collaborating specialist laboratories will lead to increased
awareness and shorter response times for HRCs. Ideally, these
networks will be based on a shared bioinformatic infrastructure
that links molecular data (genome sequences) and metadata
(time, place, clinical details, and additional variables) with tools
that help appraise the clinical and public health relevance of any
given entry. This poses significant technical, ethical, and political
challenges; however, the benefits of this fundamental shift in mo-
lecular epidemiology cannot be overstated. The efficient manage-
ment and interrogation of genome data by public health and med-
ical audiences may ultimately lead to the erosion of conventional
reference diagnostic tasks such as identification to the species
level, characterization of clinically important virulence or resis-
tance phenotypes, and identification of outbreaks and inference of
national or international transmission.

Staphylococcus aureus represents an epidemiological paradigm
because of the undisputed public health relevance of this species,
which is characterized by multiple-antibiotic resistance and a po-
tential for swift dissemination through health care, social, and
farm animal production networks. Here we demonstrate the util-
ity of WGS when applied to a continental-scale representative
“population snapshot” by using a novel data visualization plat-
form. We sequenced 308 S. aureus isolates responsible for invasive
infections that were recovered from 186 hospitals in 21 countries
across Europe in a 6-month period. We consider three analytical
strands: (i) a representative phylogeographic analysis that defines
HRCs on a population level, (ii) an analysis of the dynamics of
virulence and resistance carried by mobile genetic elements
(MGEs), and (iii) an in silico ascertainment of antibiotic resistance
encompassing 19 antibiotic compounds of clinical relevance.

To underline the added value for public health decision mak-
ing when WGS data are supplemented with epidemiological meta-
data collected through structured surveys, we developed a web
application (Microreact) that allows easy access and visualization
of our data by medical and public health audiences and is available
at the project URL (http://www.microreact.org/project/
EkUvg9uY?tt�rc). This tool can be used for any appropriate data
set where a phylogenetic tree and associated metadata are available
(see http://www.microreact.org).

RESULTS

We chose a random sample (n � 308; 10.6%) of isolates collected
as part of a European structured survey of S. aureus from invasive
diseases (3). Sixty percent (n � 185) of these isolates were
methicillin-sensitive S. aureus (MSSA), and 40% (n � 123) were
methicillin-resistant S. aureus (MRSA). A total of 235,226 SNP
sites within the core genome were identified by mapping against a
single reference genome, HO 5096 0412 (sequence type 22
[ST22]). We have divided the analysis and interpretation of the
results into three parts: (i) a broad phylogenetic analysis and more
fine-scaled consideration of exemplar lineages of high public
health relevance, (ii) the distribution and dynamics of the acces-
sory genes conferring virulence and resistance traits in the context
of individual HRCs, and (iii) a comparison of antibiotic suscepti-
bility profiles ascertained by in silico prediction from genome data
with conventional susceptibility testing carried out in Staphylo-
coccal Reference Laboratories (SRLs) and the European Commit-
tee on Antimicrobial Susceptibility Testing (EUCAST) Develop-
ment Laboratory (EDL).

Broad and fine-scale phylogenetic analyses for the identifica-
tion of high-risk clones. Analysis of core SNPs resolved the pop-
ulation into 6 major (CC5, CC22, CC8, CC30, CC45, CC15) and
10 minor clonal complexes (CCs) and STs (CC1, ST20, ST25, ST7,
CC121, ST88, CC12, CC398, ST101, ST72), as previously defined
by multilocus sequence typing (MLST)/eBURST (4) (Table 1;
Fig. 1 and 2). The six major CCs are each represented by at least 24
isolates, whereas the minor lineages are represented by a mini-
mum of four isolates and a maximum of 14. Subdivisions within a
given CC and within individual STs are resolved by the data
(Fig. 2E), which identify very closely related isolates resulting from
recent expansion. We refer to these groups within CCs simply as
clusters. These include many well-known MRSA “clones” previ-
ously defined by MLST, pulsed-field gel electrophoresis, and spa
typing.

The distribution of MRSA and MSSA isolates is not random
with respect to CCs (Table 1). Ninety-three percent of the MRSA
isolates belonged to only three CCs, CC22, CC5, and CC8, al-
though these CCs represent only approximately half of the isolates
(Table 1). Over 70% of the isolates in CC5, CC8, and CC22 are
MRSA, whereas all of the isolates in CC15 are MSSA. CC45 shows
moderate levels of MRSA (23%), and CC30 shows low levels (6%).
The overall topology of the tree is highly consistent with previous
studies (5) (Fig. 1 and 2). The impact of recombination on tree
topology was investigated by computing the frequency of ho-
moplasy (phylogenetic conflicts within the data). This confirmed
previous work that revealed a high rate of homoplasy between the
CCs (37.8% of the core SNPs) but very low levels when consider-
ing the variation within each of the CCs (0.62% of the core SNPs)
(5). We are therefore confident that the fine-scaled phylogeo-
graphic inferences within individual CCs have not been seriously
compromised by recombination. Intra-CC diversity was calcu-
lated simply as the mean number of SNP differences in all pairwise
comparisons, and the average time since each pair of genomes
shared a common ancestor was calculated on the basis of the pub-
lished S. aureus mutation rate (Table 1) (6–9). This revealed sim-
ilar levels of diversity between CCs and that, on average, the com-
mon ancestor of any pair of genomes belonging to the same major
CC existed from the mid-1930s (CC45) to the mid-1970s (CC15).

A key observation from our previous work on spa typing was
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that MRSA variants tend to show geographic clustering, whereas
MSSA variants do not (3). The WGS data permit more detailed
comparisons of spatial signals within and between MRSA and
MSSA clusters belonging to individual CCs. We examined three
major CCs that illustrate the usefulness of WGS for public health
and infection control; other CCs (CC45, CC8, ST239, and CC15)
are discussed in the supplemental material (see Fig. S1 to S4, re-
spectively). All of the phylogenetic analyses, presence/absence of
accessory genes, and associated metadata are available at the proj-
ect URL (http://www.microreact.org/project/EkUvg9uY?tt�rc)
by use of the Microreact tool; a detailed guide is provided in
Text S1 the supplemental material, with CC45 as an example.

CC5. CC5 is the most abundant CC in this study, being repre-
sented by 70 isolates, 80% of which are MRSA (red branches)
(Fig. 3). Three MRSA clusters (ST225, ST228, and ST125) exhibit
strong geographic structuring indicative of regional expansion.
One MSSA (green branches) cluster is resolved on the tree but is
not geographically restricted. This cluster largely corresponds to
spa type t002, and this observation is consistent with our previous
work showing that MSSA genotypes are widely distributed across
Europe (3). The 13 isolates within the ST225 cluster all contain
SCCmec type II elements. Seven of these originate from Germany,
six are from the Czech Republic, and the partitioning within the
phylogenetic tree coincides perfectly with the country of origin,
although some of these isolates originate from areas close to the

shared border (e.g., Ústí nad Labem in the Czech Republic and
Grossenhain in Germany are just 122 km apart by road). The data
thus point to the border between Germany and the Czech Repub-
lic as being a barrier to health care referral practices and thus
MRSA spread.

The MRSA cluster corresponding to ST228 and related STs
consists of 15 isolates all harboring a type I SCCmec element. Nine
of these isolates define a very tight subcluster corresponding to
ST111 (n � 8) and ST1481 (n � 1). Eight of these nine isolates
originate from Croatia, which is indicative of rapid epidemic ra-
diation in that country, and three isolates from Split cluster to-
gether on the tree, reflecting geographic structuring on a national
level. One ST111 isolate originates from Sweden, consistent with
the probable importation of ST111 into Sweden from Croatia by
travel. The MRSA ST125 cluster consists of eight MRSA isolates
restricted to central and northern Spain. For further investigation,
see the Microreact tool, where supplementary analysis and geo-
graphic detail can be explored.

CC22. CC22 contains epidemic MRSA-15 (EMRSA-15)
(Fig. 4A), which is currently the most abundant and fastest grow-
ing health care-associated MRSA (HA-MRSA) clone in Europe
(10). This clone accounts for the majority of the CC22 isolates
(31/41; 76%) in our sample, which are characterized by an SCC-
mec type IVh element and form a tightly clustered starlike phylog-
eny (Fig. 4A). Fourteen of these isolates originated from the

TABLE 1 Abundance, diversity, and proportion of MRSA isolates in each major or minor CC detected in the sample

Group and CC
Total no. of
genomesa

No. of reference
genomes

Proportion of
MRSA genomesb

Mean no. of PW
SNPs (SE)c

Mean yr of PW
MRCA (range)d Example clone(s)

Major
CC5 78 8 0.8 438 (8.2) 1951 (1950–1952) USA100 New York/Japan USA800, pediatric
CC22 41 1 0.775 266 (6.6) 1972 (1972–1973) EMRSA-15, Barnim
CC45e 39 0 0.231 571 (9.4) 1935 (1933–1936) USA600, Berlin
CC8f 33 5 0.642 456 (9.1) 1949 (1948–1950) Iberian, USA300, USA500, archaic, Central European
CC30g 34 2 0.065 481 (5.8) 1946 (1945–1947) EMRSA-16 (ST36), phage type 80/81, SWP, USA200
CC15h 24 0 0 258 (4.4) 1974 (1973–1974)

Minor
CC1 14 2 0 415 (9.3) 1954 (1953–1955) USA400
ST20 7 0 0 369 (10.4) 1960 (1959–1961)
ST25 7 0 0 307 (9.5) 1968 (1966–1969)
ST7 6 0 0 159 (6.3) 1986 (1985–1987)
CC121 5 0 0 737 (17.7) 1913 (1912–2016)
CC88 5 0 0 356 (12) 1961 (1960–1963)
CC12 4 0 0 365 (11.9) 1960 (1959–1962)
CC398 4 1 0 326 (11.7) 1965 (1964–1967)
ST101 4 0 0 240 (10.8) 1976 (1975–1978)
ST72 4 0 0.25 275 (10.3) 1971 (1970–1973)

a Including reference genomes.
b Excluding reference genomes.
c Mean number of SNPs in all possible pairwise (PW) combinations of genomes. Standard errors were estimated by bootstrapping (as implemented in MEGA v6.0). The standard
error is the spread of pairwise values and reflects the degree of substructuring within each CC. A high standard error indicates that some pairs of genomes are closely related and
others are more distant (that is, subclusters are apparent within the CC), whereas a low standard error indicates that all pairs of genomes show similar levels of divergence from each
other and the phylogeny of the isolates within the complex is starlike. This analysis therefore indicates that, of the major CCs, CC15 exhibits the lowest degree of subclustering,
whereas CC45 and CC8 exhibit the highest.
d Mean estimated date of the most recent common ancestor (MRCA) of all possible pairwise combinations of genomes. This is based on a mutation rate of 1.3 � 10�6 per site per
year (or four SNPs per genome per year). This rate was proposed for ST22 by Holden et al. (8), and similar rates have been calculated for several other lineages (ST30, ST225, ST8-
USA300) (6, 7, 9). We note that the mutation rate estimate for ST239 is approximately twice as high (3 � 10�6 per site per year) (12), for reasons that are unclear. The calculation is
as follows. Approximating the genome size of S. aureus to 3 Mb, this rate equates to approximately four SNPs per genome per year. If a pair of genomes differs by, say, 500 SNPs,
meaning 250 SNP changes, on average, in each of the two genomes, this would therefore correspond to 250/4 � 62.5 years of divergence. As the samples were collected in 2006, this
means that the common ancestor of the two genomes would have existed around 1943.
e Excluding isolate 11_SE_395, as this is outside the main CC45 cluster.
f We have excluded the diverse ST239 genomes corresponding to the Portuguese, Brazilian, and EMRSA-4-7 clones, as this is a hybrid genome.
g Excluding ST34, as this is a hybrid genome.
h Excluding isolate 296_DE_582 (ST582), as this is a hybrid genome (see text).
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United Kingdom, 11 were from Germany, and 7 were from Por-
tugal. The topology of the tree supports a United Kingdom origin
of EMRSA-15, followed by separate introductions from the
United Kingdom into Germany and Portugal, consistent with the
work of Holden et al. (8). In the German cluster, isolates from
Berlin show the fewest SNP differences from the United Kingdom
isolates, implicating that city as the initial point of introduction
from the United Kingdom (Fig. 4B). This clone subsequently
spread to the surrounding cities of Kiel, Frankfurt (Oder), Ha-
nover, and Magdeburg, supporting epidemiological observations
made by the Robert Koch Institute during investigations in the
1990s (11). Similarly, the Portuguese CC22 cluster points toward
Lisbon as the point of introduction, with subsequent spread to
Braga (in the far north) and Coimbra (central). All of the CC22
isolates located basal to the EMRSA-15 subtree are MSSA. They
form a more diverse population, genetically and geographically,
and represent the MSSA reservoir from which EMRSA-15
emerged (8).

CC30. CC30 contains successful HA-MRSA and community-
associated MRSA (CA-MRSA) epidemic clones, including

EMRSA-16 and the Panton-Valentine leukocidin (PVL) toxin-
positive Southwest Pacific (SWP) clone. Figure 5A shows the tree
for the 32 CC30 isolates present in the current sample and illus-
trates that only two (6.5%) were MRSA. One of the MRSA isolates
is closely related to the MRSA252 reference, which is a HA-
EMRSA-16 isolate (ST36), and the other (ST1829) is related to the
TCH60 reference, a representative isolate of the SWP clone (14).
The majority of 28 MSSA isolates form a striking starlike phylog-
eny with little geographic structure (for detailed investigation of
geographic origin, see the Microreact tool). To place this lineage in
a broader context, we combined our data with those of McAdam
et al. (7), who recently sequenced representatives of the three ma-
jor CC30 epidemic lineages; EMRSA-16, SWP, and the historical
MSSA phage type 80/81 clone (Fig. 5B). This revealed that the
large MSSA radiation corresponds to a successful progenitor pop-
ulation from which HA-EMRSA-16 emerged. This MSSA cluster,
referred to by MacAdam et al. as “other epidemic,” is responsible
for a significant disease burden in the community and in hospitals
and encompasses a variety of spa types. Given the public health
significance of this cluster, we tentatively suggest the designation

CC121
CC123

CC45

CC398
CC30

CC22

CC8

ST239

CC5

CC15

CC1

CC20

 ST101

 ST88

 ST97
  ST25

  ST7

 ST72

 ST12

FIG 1 Phylogenetic relationship of the invasive S. aureus population circulating in Europe in 2006. A rooted neighbor-joining tree based on 235,226
genomewide core SNPs is shown. Lineages are highlighted and named according to the corresponding CC or ST.
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EMSSA-ST30. All of the isolates in this cluster contain the SNPs in
hla and agrC previously reported to attenuate virulence (18)
(Fig. 5B). The presence of these SNPs among community-
associated invasive disease isolates further challenges the sugges-
tion that they play a role in nosocomial adaptation (18).

Distribution and dynamics of accessory genes. The accessory
genome consists of genes that are variably present in a defined
population and can be major drivers of adaptation (15). An un-
derstanding of the dynamics of key MGEs such as phages and the
SCCmec elements, which carry determinants of the virulence and
resistance phenotypes, is critical for monitoring the emergence
and diversification of successful HRCs. We explored the diversity
and distribution of accessory genes in our de novo assembled ge-
nomes by assigning genes to noncore homology groups (ncHGs).
We categorized these groups according to the types of mobile
elements with which they are associated, specifically, phages, SC-
Cmec elements, plasmids, S. aureus pathogenicity islands, and
transposons (Fig. 2). Fifty-seven percent of the ncHGs in the sam-
ple were phage associated, representing the most dominant cate-
gory by far. The total number of ncHGs varies between different
CCs; CC8 harbors the highest average number of ncHGs per iso-
late at 197, and CC15 has the lowest at 71 (see Fig. S5 in the
supplemental material).

Figure 2D illustrates the variation in the accessory genome
within single CCs, and Fig. 6 shows the total number of ncHGs

shared by each pair of genomes. Many more ncHGs are shared by
isolates belonging to the same CC than by isolates belonging to
different CCs. This supports the concept of a “core variable” ge-
nome (16), representing genes that are universally present at the
scale of an individual CC but are variably present or absent with
respect to the species as a whole. We also noted cases of MRSA
clusters within CCs that have acquired a distinctive repertoire of
ncHGs, evident as dark squares in Fig. 6; for example, the ST239
cluster (CC8), the ST228 cluster (CC5), and the ST225 cluster
(also CC5). The high level of consistency between phylogenetic
relatedness and the ncHG repertoire is expected over these very
fine phylogenetic scales because of common inheritance. How-
ever, this consistency rapidly decays with increasing core genome
divergence, particularly for highly dynamic elements such as
phages. It is evident from Fig. 6 that CC5 and CC8 have a high
number of ncHGs in common, resulting in a single large square
that encompasses both CCs. The large proportion of MRSA
strains within CC5 and CC8 does not, by itself explain, this obser-
vation, as it is still apparent when SCCmec is excluded (data not
shown).

Comparing the total number of ncHGs within MRSA and
MSSA isolates in the same CC revealed that MRSA clusters con-
tain more ncHGs than closely related MSSA genomes, even when
the SCCmec elements were excluded (see Fig. S6 in the supple-
mental material). For example, considering CC5 and CC22,

FIG 2 Phylogeny decoration. Colors of branches indicate MSSA (green) and MRSA (red) states. Each isolate is annotated by affiliation with a CC or ST (A),
SSCmec type and MSSA (green) or MRSA (red) state (B), or antibiotic resistance profile (C). Red boxes indicate the presence of genetic resistance markers, black
dots indicate phenotypic resistance, and gray boxes highlight resistance in reference genomes. (D) Size and composition of the accessory genome based on the
number of noncore homologous groups with further categorization according to MGE type. (E) Close-up of phylogenetic trees of the six major lineages.
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MRSA isolates contain approximately 50% more ncHGs than
MSSA isolates of the same complex. Although it is unclear
whether the acquisition of SCCmec is the cause or the conse-
quence of an increased propensity to integrate horizontally ac-
quired DNA, this observation may be relevant to the finding that
MRSA strains tend to contain many more resistance determinants
than MSSA strains, conferring combined resistance to multiple
classes of antibiotics.

Phages are important from a public health perspective, as they
are carriers of virulence genes and resistance determinants. We
assayed the distribution of seven phage types on the basis of the
presence/absence of their integrase genes as described previously
(17). The overall number of prophages per genome ranged from
zero (9%) to five (0.3%), with a median of two (46%). Sa3int was
the most commonly observed phage type, being present in 82% of
our isolates, followed by Sa2int (32%), and Sa1int (27%). Sa4int
was very rare, being observed in only four isolates (1.3%). The

distribution of these phage types and associated cargo genes across
the tree reveals important differences between the CCs and be-
tween different clusters belonging to the same CC (see Fig. S7 in
the supplemental material). For example, the Sa3int prophage was
found in all of the CCs, with the exception of CC15. This prophage
can harbor four genes belonging to the immune evasion cluster,
chp, sak, scn, and sea/sep, and in our data mostly harbored sak and
scn, with the addition of either chp (e.g., CC22, CC45) or sea/sep
(e.g., CC8, except USA300). Notably, chp and scn are common in
CC15 even though the prophage itself is absent. The most likely
explanation for this pattern is that the prophage was once inte-
grated and then lost from the genome, leaving chp and scn behind.

SasX is a cell wall-anchored surface protein that is linked to the
epidemiological success of ST239 in China and Southeast Asia
(19). The �SP�-like prophage that encodes SasX was identified
among three ST239 isolates from Poland (see Fig. S7D). Two of
these isolates cluster with the TW20 reference, which is represen-
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FIG 4 Phylogenetic reconstruction of CC22. Branch color indicates MSSA (green) or MRSA (red). The EMRSA-15 cluster is shaded gray. Symbols at the tips
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of its entry into Portugal.
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tative of the “Asian clade” of ST239 (see Fig. S3), pointing to the
introduction of these isolates into Poland from Asia. The third
sasX-positive ST239 isolate in our data is more likely to be a native
Polish variant and most likely acquired sasX from the imported
Asian strains cocirculating in Poland. The data thus point to the
horizontal dissemination, presumably via lysogenic conversion,
of the phage-borne sasX virulence factor within Europe. Other
examples of the horizontal dissemination of virulence genes are
evident in our data. We note only a single representative of
USA300, an MRSA strain from Belgium that closely clusters with
the reference USA300 genome and contains a type I arginine cat-
abolic MGE (ACME) (see Fig. S2). However, we also note a single
CC5 SCCmec type V MRSA isolate from Portugal that has also
acquired a type I ACME region (Fig. 3; see Fig. S7D). The distri-
bution of other toxin and virulence genes, such as the presence of
tstH in the cluster we designated EMSSA-ST30, is illustrated in
Fig. S7D and incorporated into the visualization platform at the
project URL.

Multiple SCCmec types (I, II, III, IV, V, and IV) were present
among the 120 MRSA isolates. Type IV elements are the most
widely distributed among different lineages, being present in all

five of the major CCs that contain MRSA strains. From the phy-
logenetic analyses, we estimate that a minimum of 20 independent
acquisitions of this element have occurred in our sample. How-
ever, the rate of SCCmec acquisition clearly varies between CCs,
whereas only a single acquisition of the SCCmec type IVh element
is observed in CC22, in CC5, there have been a minimum of seven
different acquisition events encompassing five different SCCmec
types. For example, the Spanish ST125 cluster harbors both SCC-
mec type IVc and IVs elements, indicating multiple acquisitions.
In contrast, no CC15 isolates have acquired SCCmec. The rever-
sion of MRSA to MSSA because of the deletion of SCCmec appears
to be a relatively rare event and was identified in only two CC8
isolates in our sample (see Fig. S2).

WGS as a tool for predicting antibiotic resistance. The EDL
tested all of the isolates against 16 antibiotics. In addition, all
MRSA isolates were tested against a further three antibiotics that
are prescribed mainly for the treatment of infections caused by
MRSA. A total of 5,288 in silico predictions of resistance/suscep-
tibility were made and compared against the EUCAST reference
results in a blinded fashion. Of these, 1,075 were predicted to be
resistant, compared with 1,050 identified phenotypically as resis-
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FIG 5 (A) Phylogenetic reconstruction of CC30 isolates in the sample. Branch color indicates MSSA (green) or MRSA (red). Reference genomes are named and
clusters are highlighted and named in accordance with the report of McAdam et al. (7). The dashed line indicates the long branch leading to three ST34 isolates
that evolved through the acquisition of a 200-kb homologous replacement within the chromosome from an ST10/ST145-like parent (66). (B) Phylogenetic tree
of combined CC30 data obtained from isolates from the study of McAdam et al. (7) and isolates from panel A. Colors and cluster names are as in panel A. Light
gray shading indicates isolates carrying SNPs in the hla and agrC genes thought to restrict these lineages to health care settings. (C) Representation of successive
clonal radiations within the recent evolutionary history of CC30. These radiations correspond to recognized HRCs, both contemporary and historic. The SWP
clone is a historic diversified starlike expansion with relatively long branches. Phage type 80/81 probably emerged from within this starlike expansion, as did the
current MSSA HRC, which we have termed EMSSA-ST30. Finally, EMRSA-16 emerged from within the successful EMSSA-ST30 lineage, resulting in a more
recent, and tightly clustered, starlike expansion.
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tant by the EDL, with concordance noted for 5,213 (98.6%) of the
individual tests (Fig. 2; Table 2). However, there were some note-
worthy exceptions. For the aminoglycoside amikacin, 21 isolates
were falsely predicted to be resistant on the basis of the presence of
the aphA-3 kanamycin resistance gene and aadD. It has previously
been noted that the presence of these two aminoglycoside-
modifying enzyme genes is a poor indicator of amikacin resistance
(20, 21). Resistance to mupirocin was not predicted in five isolates
that had inhibition zones (29 mm) close to the susceptibility
breakpoint (�30 mm). The reason for this discrepancy is likely to be
normal variation or the choice of medium. There were also eight
incorrect predictions of erythromycin susceptibility. In these cases,
the result could readily be explained by loss of the ermC-carrying

plasmid after sequencing but prior to phenotypic testing. Similarly,
the loss of a BlaZ �-lactamase-carrying plasmid could explain the
three false-negative predictions of penicillin resistance.

We also determined the concordance of the antimicrobial suscep-
tibility test (AST) results provided by the European Staphylococcus
Reference Laboratories (SRLs), which contributed the isolates to our
sample, with the EDL reference data. The SRLs submitted a total of
2,252 AST results. Of these, 2,203 (97.8%) were concordant with the
EUCAST test results (Fig. 2; Table 2). Thus, it is clear that a small
amount of discordance between phenotypic tests can be expected,
even when they are carried out by experienced reference laboratories.
We note that the degree of discordance between the in silico predic-
tions and the EUCAST data is comparable to the degree of discor-
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darker shading indicates more ncHGs in common (see the scale at the bottom). The dark squares corresponding to (from the top) CC45, CC30, CC22, CC8, CC5,
and (at the bottom) CC15.

Genome Sequencing for Pathogen Surveillance

May/June 2016 Volume 7 Issue 3 e00444-16 ® mbio.asm.org 9

mbio.asm.org


dance between the two sets of phenotypic data. This demonstrates
that in silico predictions were at least as reliable, in terms of matching
the gold standard, as the AST results generated by independent refer-
ence laboratories.

DISCUSSION

A consistent and comprehensive sampling frame is a crucial com-
ponent of effective pathogen surveillance in public health, though
in reality, this may involve significant logistical and political chal-
lenges. By taking a random sample of a larger collection assembled
as part of a pan-European structured survey, we have minimized
the problems associated with phylogenetic discovery bias (22) and
are confident that our data capture a meaningful snapshot of
S. aureus invasive disease isolates in Europe at the time of sam-
pling. However, as with all sampling frameworks, important ca-
veats remain. First, all of the isolates were recovered from invasive
infections, primarily blood, meaning that we have underrepre-
sented isolates causing skin and soft tissue infections. Second, lab-
oratories submitted the first five MSSA isolates and the first five
MRSA isolates from individual patients. A small number of labo-
ratories did not receive five MRSA isolates during the 6-month
survey because of a very low frequency of MRSA disease in their
regions, for example in Scandinavia, and these laboratories com-
pleted their quota with MSSA isolates.

Despite these caveats, the combined analysis of WGS with ep-
idemiological metadata addresses the following three key ele-
ments of managing infectious disease threats in public health.

Genetic population structure and identification of HRCs.
The WGS data demonstrate that the disease-causing population of
S. aureus is readily partitioned into highly discrete subpopulations
or CCs. These CCs vary in their potential to spawn HRCs such as
EMRSA-15 (8) or USA300 (9, 22), and our analysis suggests that
these differences may be related to the varying propensity of each
CC to acquire exogenous DNA (see Fig. S5 in the supplemental

material). Analysis of fine-scale genetic variation and spatial struc-
turing of the well-characterized HRCs circulating in Europe dur-
ing the sampling period helped identify key population level prop-
erties, or HRC signatures, that can be used to recognize candidate
HRCs, even in the absence of detailed phenotypic data (Fig. 3 to 5;
see Fig. S1 to S4). Central to this is a consideration of phylogenetic
tree topology, relative abundance, and geographic structuring.

Perhaps the most striking example is EMRSA-15, which
emerged from the CC22 population approximately 30 years ago
(8) and has subsequently become pandemic. Phylogenetic analysis
of ST22 reveals a comet-shaped phylogeny, with two distinct
parts; the comet head consists of the starlike radiation of EMRSA-
15, reflecting recent rapid expansion, while the tail represents the
more diverse MSSA progenitor population (Fig. 4A).

We find multiple similar signatures of rapid clonal expansions
that coincide with recognized successful clones such as ST225,
ST228, and ST125 within CC5 (Fig. 3). We also note previously
unrecognized clusters in Europe that constitute candidate HRCs
in the MSSA population, the most notable example being the
CC30 MSSA designated EMSSA-ST30 here. By combining our
data with the WGS data from a previous study of well-known
CC30 HRCs (Fig. 5B), we placed EMSSA-ST30 within a broader
evolutionary context. This revealed that the EMRSA-16 HRC
emerged from EMSSA-ST30, as hypothesized originally from
MLST data (24). This highlights the importance of recognizing
successful MSSA lineages not only as HRCs in their own right but
also in their role as likely progenitors of EMRSA (25).

Assessing the risks posed by virulence and resistance deter-
minants for public health. CCs differ in their propensities to ac-
quire and maintain accessory genome elements (see Fig. S1 in the
supplemental material), a factor that may influence the emergence
of HRCs. CC30 represents a good example of a lineage that has
acquired elements carrying important virulence and resistance de-

TABLE 2 Comparison of antibiotic resistances predicted by in silico and SRL test results against the EDL reference

Antibiotic

No. of in silico predictions vs EDL results

% Concordance

No. of SRL vs EDL
resultsa

% Concordance

No. of in silico vs
EDL resultsa

% ConcordanceTotal Traits
False
positive

False
negative Discordant Total Discordant Total Discordant

Penicillin 308 269 4 3 7 97.73 131 7 94.66 308 7 97.73
Cefoxitin 308 123 3 1 4 98.70 216 3 98.61 308 4 98.70
Ciprofloxacin 308 122 2 3 5 98.38 219 4 98.17 308 5 98.38
Moxifloxacin 308 118 2 0 2 99.35
Amikacin 308 71 21 2 23 92.53
Gentamicin 308 29 0 0 0 100.00 243 1 99.59 308 0 100.00
Tobramycin 308 77 7 0 7 97.73 79 1 98.73 308 7 97.73
Erythromycin 308 105 5 3 8 97.40 260 8 96.92 308 8 97.40
Clindamycin 308 95 3 2 5 98.38 172 10 94.19 308 5 98.38
Tetracycline 308 21 1 0 1 99.68 133 1 99.25 308 1 99.68
Tigecycline 308 0 0 3 3 99.03
Fusidic acid 308 14 1 0 1 99.68 175 5 97.14 308 1 99.68
Linezolid 308 0 0 0 0 100.00 194 1 99.48 308 0 100.00
Mupirocin 308 9 0 5 5 98.38
Rifampin 308 12 1 0 1 99.68 225 4 98.22 308 1 99.68
Trimethoprim 308 10 0 0 0 100.00
Teicoplanin 120 0 0 3 3 97.50 87 3 96.55 120 3 97.50
Vancomycin 120 0 0 0 0 100.00 118 1 99.15 120 0 100.00
Daptomycin 120 0 0 0 0 100.00
Total 5,288 1,075 50 25 75 98.58 2,252 49 97.82 3,628 42 98.84
a Only results for antibiotics tested by SRLs were compared.
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terminants. In addition to the phage-borne PVL toxin gene har-
bored in phage type 80/81 and the SWP clone, the cluster of iso-
lates that we designated EMSSA-ST30 maintains the tstH gene
encoding a superantigen that can cause toxic shock syndrome at
high frequency (26) (see Fig. S7). This cluster is therefore reminis-
cent of, and likely descended from, the ST30 variants responsible
for the tampon-associated toxic shock syndrome that emerged in
the 1980s (27). This provides another line of evidence for the
public health risk posed by this widespread clone.

The success of ST239 in China and much of Southeast Asia has
been largely attributed to SasX, a surface-anchored protein that
modulates host interactions and transmissibility and is carried on
the �SP�-like prophage (19). In Poland, we found evidence that
ST239 isolates from the successful Asian lineage spread repeatedly
to Europe (12) but also that this sasX virulence determinant has
been transduced from the European ST239 genetic background
(see Fig. S3). This observation justifies heightened epidemiologi-
cal vigilance with respect to this HRC, not only for particular
epidemiologically successful clones but also for virulence determi-
nants they can spread.

A key characteristic of HRCs has been the emergence of antibiotic
resistance. WGS provides the opportunity to scan genomes for all
known genetic determinants of antibiotic resistance. We examined
the distribution of known resistance determinants and the extent to
which it is possible to predict resistance profiles from sequence data in
a blinded fashion. Whereas previous studies have shown a high con-
cordance between phenotypic data and genotypic predictions (8, 13,
28), we sought to extend these studies by including a greater number
of antibiotics (19 in total) and by including a representative sample of
isolates that cause invasive disease among patients in European hos-
pitals and that we consider the clinically most relevant representatives
of the S. aureus population. Further, as discrepancies between the two
methods could arise from uncertainties in the phenotypic data, as
well as inaccurate predictions from genotyping, we compared two
independent sets of phenotypic data, one contributed by various
SRLs and the second generated at the EDL. Taking the EDL data to
represent the “gold standard,” our genotypic predictions show higher
rates of concordance with these data (EDL versus genotype, 98.6%)
than do the data generated by the SRLs (EDL versus SRL, 97.8%,
Table 2). We conclude that genotypic prediction is at least as reliable
as routine phenotypic testing and that any discrepancies between the
two approaches are just as likely to represent inaccuracies in the phe-
notypic testing as inaccurate genotypic predictions.

We do not, however, propose that genotypic prediction should
replace phenotypic testing, as such a strategy would be vulnerable
to the emergence of new and uncharacterized antibiotic resistance
mechanisms. Moreover, in silico prediction for other organisms
has proved more challenging, especially for Gram-negative bacte-
ria (29), where the present understanding of the genetic basis of
resistance is less comprehensive. Despite these limitations, WGS
data clearly provide additional objective evidence that is not prone
to heterogeneities inherent to conventional phenotypic test meth-
ods deployed in different reference laboratories. Moreover, in the
longer term, WGS will deliver a digitized and cumulative record
that will address the need for internationally agreed standards for
collection of data and reporting on antibacterial resistance in hu-
man health and for harmonizing standards across medical, veter-
inary, and agricultural sectors as required by the WHO, the World
Organization for Animal Health, and the Food and Agriculture
Organization of the United Nations (30).

Deployment of informed and targeted prevention and con-
trol strategies. We have argued for a two-pronged approach to the
identification of emerging HRCs and an assessment of the threats
they pose to public health, (i) a consideration of clonal related-
ness, abundance, and phylogeographic structure at the population
level and (ii) mining of the accessory genome repertoire to ascer-
tain likely virulence and resistance properties. These two perspec-
tives should also be combined when considering appropriate
containment measures. The recognition of an HRC through large-
scale surveillance would enable the development of tailored rapid
diagnostic tests based on distinguishing SNPs or accessory gene
signatures. This will allow for selective screening and targeted con-
tainment by decontamination and isolation strategies that are eas-
ier to implement, more economical, and more likely to be effective
than more generic procedures. The expedition of specifically tai-
lored tests during outbreaks would allow health authorities or
infection control practitioners to screen potential hosts for colo-
nization or infection, thereby reducing the chance of onward
transmission. WGS allows for rapid appraisal of outbreak sources
and transmission pathways that will also help in weighing up in-
fection control priorities. Moreover, information regarding the
virulence gene repertoire associated with an emerging or outbreak
HRC will inform clinicians and medical microbiologists of likely
clinical manifestations.

Ultimately, the key to managing HRCs lies in making the data
available in an open and intuitive format for infection control and
public health audiences. This democratization of the data in-
creases the collective power of interpretation (i.e., the identifica-
tion of HRCs) while decreasing the necessity for local expertise in
bioinformatics. The coupling of large-scale population sampling
by WGS within open-access and freely available web resources
empowers the community to identify clone-specific signatures
(canonical SNPs and/or accessory genes), promoting the design of
HRC-specific rapid and cost-effective molecular diagnostic tests
(31).

With this communication, we aimed to demonstrate how the
integration of WGS into epidemiological surveillance programs
provides the means for both the early warning of emerging HRCs
and a robust assessment of associated public health threats. How-
ever, the advent of the underlying sequencing technology ad-
dresses only a small part of the challenge of managing the threat
from infectious disease. In order to exploit this technical advance
to its maximum potential, two things must happen. First, national
reference laboratories need to agree to, and abide by, common
standards for the contribution of isolates to structured surveys,
ideally at 5-year or shorter intervals, on pancontinental and, ide-
ally, global scales. Second, platforms for bioinformatics need to be
developed to allow intuitive management and exploration of the
data. These data sets should conform to internationally curated
standards for sets of genes and mutations that are recognized as
key virulence or resistance determinants, and we propose the ini-
tiation of internationally curated data sets to act as a gold standard
resource for genomic antimicrobial resistance determinants.

The establishment of cumulative databases will engender a far
richer understanding of the detailed dynamics underpinning
clonal emergence and replacement, national and international
transmission, and the horizontal transfer of core genes and MGEs.
The increasing public health threat from bacterial pathogens is, in
large part, down to the ability of these organisms to rapidly adapt
through the dissemination of genes and mobile elements. Our best
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chance of managing these threats in the future is to emulate, as far
as possible, this resource and data sharing through the develop-
ment of international surveillance networks and a common data
exchange infrastructure.

MATERIALS AND METHODS
Sampling framework and bacterial isolates. From September 2006 to
February 2007, 357 laboratories serving 450 hospitals in 26 countries col-
lected nearly 3,000 MSSA and MRSA isolates from patients with invasive
S. aureus infections, as described previously (3). Approximately 10% (n �
308) of these were randomly selected for sequencing. Isolate details are
available for download at the project URL.

Genomic library creation and sequencing. For each sample, index-
tagged libraries were prepared and sequenced in Illumina Genome Ana-
lyzer GAII cells with 54-base paired-end reads or Illumina HiSeq with
75-bp paired-end reads. Downstream processing utilized the index tag
sequence information to assign reads to individual samples.

Reference genomes. To provide a wider context to the data, we uti-
lized 26 fully annotated complete S. aureus reference genomes. The strain
names and accession numbers are as follows: 04-02981, CP001844 (6);
COL, CP000046 (32); ECT-R2, FR714927 (33); ED133, CP001996 (34);
ED98, CP001781 (35); HO 5096 0412, HE681097 (8); JH1, CP000736
(36); JH9, CP000703 (36); JDK6008, CP002120 (37); JKD6159, CP002114
(38); LGA251, FR821779 (39); MRSA252, BX571856; MSSA476,
BX571857 (40); Mu3, AP009324 (41); Mu50, BA000017 (42); MW2,
BA000033 (43); N315, BA000018 (42); NCTC8325, CP000253 (44); New-
man, AP009351 (45); RF122, AJ938182 (46); BB155, LN854556; ST398,
AM990992 (47); TCH60, CP002110; TW20, FN433596 (48);
USA300_FPR3757, CP000255 (23); USA300_TCH1516, CP000730 (49).

Detection of SNPs in the core genome. The paired-end reads for the
survey isolates and the 26 publicly available genomes were mapped with
SMALT (http://www.sanger.ac.uk/resources/software/smalt/) against the
chromosome of S. aureus strain HO 5096 0412 (EMRSA-15, ST22; acces-
sion number HE681097) (8). The reference genomes were mapped by
using simulated paired fastq data (54-bp paired ends with a 300-bp in-
sert). SNPs were identified as previously described (50). Indels were iden-
tified with the Genome Analysis Toolkit (https://www.broadinstitute.org/
gatk/) (51). Unmapped reads and sequences that were not present in all of
the genomes were not considered part of the core genome, and SNPs from
these regions were not included in the phylogenetic analysis. SNPs falling
within MGE regions were also excluded from the phylogenetic analysis, as
described previously (8).

Phylogenetic analysis. Phylogenetic analysis of the isolates combined
was carried out by the neighbor-joining method as implemented in Fast-
Tree (52). In cases where data were combined with already published data,
RAxML v8.0 (53) was used for tree reconstruction based on maximum
likelihood. Only SNPs corresponding to the core genomes were used for
phylogenetic analysis. In silico reconstruction of STs conventionally gen-
erated by MLST for each isolate was carried out with the sequence data as
described by Croucher et al. (50). To root the tree, we used the sequence of
BB155, an S. aureus reference genome that belongs to ST152. This was
considered an appropriate outgroup as, according to MLST data, ST152 is
a divergent lineage approximately equidistant from each of the major
S. aureus STs and CCs previously recorded in Europe (54).

Pangenome analysis. Assemblies were produced with a pipeline com-
prising three steps: (i) correction of sequencing errors in reads with Quake
v0.3 (55), (ii) de novo assembly of corrected reads into scaffolds with
SOAPdenovo2 (56) by using a kmer of 31, and (iii) remapping of the
corrected reads to fill scaffold gaps with GapCloser v1.12 (56). Prediction
of protein coding sequences (CDSs) in assemblies was done with Prodigal
(57), and FASTA sequences and coordinate positions were extracted. An
all-versus-all BlastP (58) search of translated sequences was used as the
input for the definition of homology groups (HGs) with TribeMCL (59)
(cutoff, 1e-50) with group membership stored for querying. From a total
of 749,089 putative CDSs, 4,281 HGs were defined with various numbers

of members (1 to 1,827). Core HGs were defined as being present in at
least a single copy in each assembly, and all others were considered ncHGs.
SCCmec elements were typed by mapping reads to a pseudomolecule of
the known SCCmec variants and also by comparative analysis using the
assemblies.

Detection of prophages and virulence genes. Prophages were classi-
fied by using conserved areas of the integrase (int) genes as described
previously (17) by an in silico PCR approach. Virulence and toxin genes of
public health interest were similarly detected through in silico searches for
previously published primer sequences (eta [60]; luk-PV [61]; chp, sak,
scn, sea, sep, hlb [62]; lukM [63]; sasX [18]; tstH [64]; acr [65]).

Genomic prediction of antibiotic resistance. Resistance profiles for
19 antibiotics were predicted in silico from the sequence data as previously
described (8). In brief, the literature was comprehensively mined for the
known genetic mechanisms of antibiotic resistance in S. aureus (see Ta-
ble S1 in the supplemental material). Antibiotic resistance conferred by
SNPs in components of the core chromosome were identified from the
mapping data. Antibiotic resistance conferred by accessory genes was
identified by comparing de novo assemblies against a database of S. aureus
resistance genes with BlastN (58) and by mapping sequence reads to a
pseudomolecule consisting of concatenated antibiotic resistance genes as
detailed by Holden et al. (8).

Phenotypic testing of antibiotic resistance. The antibiotic suscepti-
bility of all S. aureus isolates was tested by the standardized EUCAST disk
diffusion method in the EDL, Växjö, Sweden, without prior knowledge of
the sequence data or metadata. Full methodological details are available in
the EUCAST Disk Diffusion Test Manual, v 3.0, 2013 (http://www.eucas-
t.org). Phenotypic resistance was defined by applying inhibition zone di-
ameter epidemiological cutoff values (ECOFFs) and EUCAST clinical
breakpoints (EUCAST breakpoint tables for interpretation of MICs and
zone diameters, version 3.1, 2013 [http://www.eucast.org]). We pooled
the intermediate and resistant categories into a single nonsusceptible cat-
egory. For our sample, this partition was fully consistent with the classifi-
cation into wild-type and non-wild-type isolates defined by the EUCAST
ECOFFs. The antibiotics tested were penicillin, cefoxitin, ciprofloxacin,
moxifloxacin, amikacin, gentamicin, tobramycin, erythromycin, clinda-
mycin, tetracycline, tigecycline, fusidic acid, linezolid, mupirocin, rifam-
pin, and trimethoprim. MRSA resistance to clinically relevant reserve an-
tibiotics (teicoplanin, vancomycin, and daptomycin) not suitable for disk
diffusion testing was determined by using the respective MIC ECOFFs
(2.0, 2.0, and 1.0 mg/liter, respectively) with E tests (bioMérieux Clinical
Diagnostics, Marcy l’Etoile, France). Phenotypic test results were dichot-
omized and grouped into wild-type and non-wild-type categories. Results
of genomic predictions were compared with the phenotypic classifications
as resistant or susceptible as defined by the ECOFFS. Moreover, results
that were made available by the SRLs were equivalently dichotomized and
also compared to those generated by the EDL in a consistent manner.

Web application. Microreact is a Node.js application written in
JavaScript. Locational data are displayed by using the Google Maps Applica-
tion Programming Interface, and phylogenetic data (in Newick tree format)
are displayed by using a custom tree viewer developed for the HTML5 Canvas
element (PhyloCanvas). Image files (.png) of annotated trees and subtrees can
be saved. Instructions and examples are shown at the microreact.org website.
The project URL for exploring the data described in this article is http://
www.microreact.org/project/EkUvg9uY?tt�rc.

Nucleotide accession numbers. WGS data for all of the isolates
tested in this study have been deposited in the Sequence Read Archive,
and accession numbers are included in the metadata available at the
project URL.
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